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The problem of an equivalent constant exponent in real-gas processes is analyzed here. A 
numerical example is shown where air undergoes adiabatic compression. 

In the derivation of the equations for a real gas there appear differential expressions of the form 

d pp -{- • (p, T) d_o = O, (1) 
P v 

where the coefficient ~ is a variable quantity which, generally, depends on the pressure and the tempera- 
ture, making the integration of the equation more difficult. In [1] expression (1) was integrated on the as- 
sumption that the coefficient is much more nearly constant than c, p, v, and T. In [2-4] this expression 
was integrated with ~ = eonst, whereupon the process was calculated by the resulting equation with the ex- 
ponent % constant and equal to the average between its actual initial and final values in the process. The 
validity of such an approach was proved there by the calculation of several processes. 

Both approaches are not rigorous and, therefore, it would be of interest to analyze Eq. (1) with a 
variable coefficient ~. Obviously, for a given process there exists a unique relation between coefficient 

and the specific volume. One may, therefore, consider the variables in (1) to be separated and this 
equation to be integrable by parts: 

In p + • In v - -  [ lnv d• : In C, (2) 
O 

f r o m  w h e r e  

Pv• ( - -  S lnvd• = p:v~'. (3) 

It follows from (2) and (3) that the end parameters of a process depend not only on the value of the ex- 
ponent at the start and at the end of the process but also on the path through which this exponent has varied. 
The equivalent constant value of the exponent in the equation which relates the start and the end points of 
a real process I-2 can be defined by the following expression. 

2 

• In v, - -  • In v= + t" lnv d• 

In (vl/v2) 

F o r  a s p e c i f i c  p r o c e s s ,  the f u n c t i o n  x = x(v)  m a y  be  a p p r o x i m a t e d  b y  a p o l y n o m i a l  x = a + bv  + eva 
+ dv 3 + . . . .  and  an i n t e g r a t i o n  of the e q u a t i o n  

d p p + ( a + b v + c v  2 + d r  a +  . . . )  d v = o .  
p v 

w i l l  t hen  y i e l d  

c v2 d va l n p + a l n v + b v - ~  2 + ~ -  + . . . .  const. (4) 
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The equation descr ibing the p roces s  1-2 is of the form 

p2v~ = plv~ exp b (vl - -  v~) -v ~ -~  (v~ - -  v~) + . . . .  

i. e . ,  the p rocess  equation in its final form is a product  of a power function and an exponential funclion. 
F r o m  (4) one can derive the equivalent constant value of the exponent: 

c d 
b ( ~ 1 -  ~) + ~ ( ~ -  v~) + X (v~ - v~) + . . .  

s  a +  (5) 
In (vdv~) 

In an adiabatic compress ion  of a ir  f rom Pt = 450 bar  and T I = 475~ to P2 = 750 bar ,  the exponent 
of the adiabatic may be expressed as the following function of the specific volume*: ~ = 4 .1284-916.7  v 
+ 95820 v 2 with xl = 2.0387 and n2 = 2.2568. 

= 2.1324. 

The average exponent of the adiabatic is 

The value of the equivalent constant exponent calculates  to be 

2.0387+2.2568 
kay -~ ~ 2.1477. 

2 

Fo r  a check, let us calculate  the exponent f rom the final p rocess  p a r a m e t e r s :  

~-= lg (750/450) =2.1370. 
lg (0.003755/0.002957) 

It is noteworthy that while, in general,  Eq. (1) must be supplemented by an equation which re la tes  
the tempera ture  to the p r e s s u r e  or  to the specific volume and the complete sys tem of equations must  then 
be considered,  the analytical relation x(p, T) is ve ry  unwieldy and cannot always be established and, there-  
fore,  our method seems  s impler .  

NOTATION 

p is the p ressure ;  
T is the absolute tempera ture ;  
v is the specific volume; 
n, k are  the adiabatic exponents. 
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*This function has been obtained by approximating severa l  values of the adiabatic exponent calculated by a 
numer ica l  method with the aid of tables in [5]. 
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